华为ALL in Al:全面公布AI战略及全栈全场景解决方案,AI芯片将不单独对外销售

2022-12-15 23:37:22 来源:

历史上成功的顶级科技公司大都经历过相似的处境,在走向伟大的过程中小错误不断,但是决定生死的关键节点却都能走对路,比如微软是第一家真正重视软件的公司,谷歌确立“移动优先”战略抓住移动互联网机遇,苹果自己控制软硬件和操作系统等等,这些不同顶级科技公司的独特竞争力让他们能经久不衰,容错率相当高。而今,这些公司都转向了同一个主题赛道——AI。

同为顶级科技公司,华为也投入到AI浪潮。尽管此前已有剧透,华为将在2018全联接大会上首发AI战略,但是华为如此彻底的转向AI还是让人始料未及,华为已经是全球第一的电信设备商,全球前三的终端厂商,而从华为轮值董事长徐直军的话语不难发现,华为已经ALL in AI。

华为AI思考

在全联接大会上,徐直军首先提到了华为的AI思考。他表示,人工智能是一种新的通用目的技术,如同公元前的轮子和铁,19世纪的铁路和电力,以及20世纪的汽车、电脑、互联网一样,华为认同:人工智能是一组技术集合,是一种新的通用目的技术(GPT)。

他同时强调,是否具备真正的人工智能思维,是否以人工智能的理念和技术解决现在和未来的问题,是我们能否在未来构筑领先竞争力的关键。华为在实践中发现,人工智能不但可以替代人,还能够自动降低生产成本。这是人工智能与信息化最大的不同,也是其最有价值的特点。

华为认为,人工智能触发的产业变革,将涉及所有行业。行业是否会被人工智能技术改变,甚至被彻底颠覆,如何以一种全新的模式,重构各自行业和企业,是我们在未来都要思考和实践的。

“今天,我们可以清晰地预测到,人工智能将改变或颠覆如下行业:智慧交通将大大提升通行效率;个性化教育将显著提升教师与学生的效率;精准预防性治疗有望延长人类的寿命;实时多语言翻译交流再无障碍;精准药物试验可以显著降低新药成本,缩短发现周期;基于AI的电信网络的运维效率将大大提升;自动驾驶和电动汽车将颠覆汽车产业等”,徐直军笃定的表示。

人工智能不仅能改变诸多行业,还将改变每一个组织。

18世纪以来的历次技术革命,每一次都会对组织的结构、作业流程和人员能力等产生巨大影响。从工作岗位和人员能力角度看,人工智能推动此次变革将有一个明显的不同:以往的历次变革总会产生大量的重复性日常工作需求,比如纺织厂的设备操作,汽车制造流水线和手机制造流水线等。

但是人工智能将在几乎每个方面提升自动化水平,因此大量的重复性日常工作岗位需求将大幅度缩减。与此对应的是,需要增加对数据科学工作岗位的需求,例如数据科学家、具备一般性数据科学能力的数据科学工程师等。这些岗位的数量将远远少于当前重复性日常工作岗位。

因此,华为认为,未来的组织人员构成可能是菱形的,其中大量处于底部的基础性、重复性日常岗位会被AI所取代。

“从历史上所有通用目的技术的发展历程来看,这些都是正常现象。我们刚刚经过了AI技术与应用的局部探索阶段,目前正处于第二个阶段。在这个阶段,从技术视角看,一方面AI技术日趋完善,同时又暴漏出越来越多的问题;从应用视角看,一方面AI的应用日渐广泛,价值持续得以确认,但同时政策环境、公司流程、组织人员等都是主要面向以往的技术的,比如信息化和互联网时代的技术,还没有为智能技术时代的到来做好准备,因而时常产生碰撞,甚至冲突。”

“我们应充分聚焦人工智能能解决的问题、聚焦其创造价值的领域,而不是把精力花在人工智能不能解决的问题或不能创造价值的领域。因为选择正确的问题比寻找新奇的方案更重要”,徐直军表明了华为AI解决问题的思路。

十大改变

与其说是十大改变,不如说是AI发展的十个方向,虽然不一定能完全概括,但确实是AI目前面临的通用问题,雷锋网也观测到,华为也循着同样轨迹发展AI。

目前人工智能存在理论和现实之间的鸿沟,徐直军用“辉煌”和“冷静”来概括,他表示,一方面人工智能产业发展“辉煌”——2017年发表的机器学习论文数是2万篇 / 全球有超过22个国家发布了AI计划 / 2017年新诞生了1100多家AI startup公司 / 2017年与AI相关的兼并收购金额达到240亿美元 / 2017年与AI相关的VC投资达140亿美元。

另一方面,人工智能初级阶段的“冷静”同样引人关注——只有4%的企业已经投资或部署了AI / 只有约2%零售商已经投资或部署了AI / 只有约5%部署的智慧城市中正在使用AI / 2017年只有约10%的智能手机内置了AI / 全球AI人才的供需比仅有1%。

徐直军表示,要解决人工智能“辉煌”与“冷静”之间的巨大落差,要从技术、人才、产业这三个方面进行主动的变革。

改变之一:缩短训练模型的时间——按照目前的技术水平,训练某些复杂模型时往往需要数天甚至数月,而成功的创新发现往往需要多次迭代,这种训练速度严重制约了应用创新。我们认为,未来模型的训练要能在几分钟、甚至几秒钟内完成。改变之二:充裕经济的算力——算力是AI的基础,但目前的算力非常昂贵,是一种稀缺资源。如果说算力的进步是当下AI大发展的主要驱动因素,那么,算力的稀缺和昂贵正在成为制约AI全面发展的核心因素。算力应该是充裕且经济的,并且这种需求应该尽快实现。改变之三:人工智能要适应任何部署场景——混合云已经成为企业采用云服务的主要模式,当前的AI主要在云,少量在边缘,与企业的业务环境的结合有待进一步深入。未来AI将无处不在,要能够部署在任何场景,并确保用户隐私得到尊准和保护。改变之四:更高效更安全的算法——算法是推动AI发展的另一个主要动力,但目前运用的主要算法多诞生于1980年代。随着AI的广泛普及,这些算法的不足愈发明显。未来的算法,要能够基于更少的数据需求,即数据高效。也要能够基于更低的算力和能耗,即能耗高效。同时要解决自身的安全问题,并实现可解释等等,这都是AI全面发展的重要技术基础。改变之五:更高的自动化水平——今天的人工智能,自身还需要大量的人工,特别是在数据标注环节,今天甚至还诞生了一个新的职业叫“数据标注师”。有人调侃说,今天的人工智能,是没有“人工”就没有“智能”。华为认为,应该大大提升AI自身的自动化水平,比如在数据标注、数据获取,特征提取,模型设计和训练等环节,要实现自动化或半自动化。改变之六:模型要面向实际应用——2018年6月,伯克利大学的助理教授 Benjamin 等发表了一篇题目奇怪的论文《CIFAR-10分类器能否泛化到CIFAR-10》。该论文指出,在CIFAR-10分类器上测试准确度出色的模型算法,却在作者创建的与CIFAR-10非常接近的另一测试集上出现了偏差,分类识别准确率下降了5-15个百分点不等。这也就意味着,这个模型算法的可用度大幅度下降。由此,可见当前很多优秀的模型算法,更多的是“考试”优秀,还未达到“工作”优秀。未来的模型必须实现工业级的优秀,即满足工业生产的需要,而不仅仅满足于测试集上“考试”优秀。改变之七:模型更新——模型的准确率并非是一成不变的,而是会随着数据分布、应用环境和硬件环境的变化而变化,始终保持准确率在期望的范围内对于企业应用是必须的。但目前的模型更新是非实时的,依赖人工周期性的更新,因此是一个半开环的系统。未来的模型要能及时适应各种变化,实时更新,实现闭环系统,保证企业AI应用始终处于最佳状态。改变之八:人工智能要多技术协同——每一个通用目的技术,只有与其它技术充分协同配合,才能发挥到极致,创造巨大的经济价值。AI也不例外,但在目前我们探讨AI时,更多的是仅仅聚焦AI本身。AI需要与云、物联网、边缘计算、区块链、大数据、数据库…等技术充分协同,如此才能发挥更大价值。改变之九:人工智能要成为由一站式平台支持的基本技能——今天,AI还是一项只有具备高级技能的专家才能完成的工作,成熟、稳定、完善的自动化工具还比较缺乏,获得一个AI模型还是一个非常复杂,耗时耗力的事情。华为认为,应该有一站式平台,提供必需的自动化工具,让AI应用开发更容易,更快捷。从而,使AI成为所有应用开发者甚至所有ICT技术从业人员的一项基本技能。改变之十:以AI的思维解决AI的人才短缺——AI人才的短缺,特别是数据科学家的缺乏,一直是业界顾虑较多的一个制约因素。而且我们认为,数据科学家将永远是稀缺的。解决之道应该是,以AI的思维解决AI的人才短缺。通过着力发展智能化、自动化、简单易用的AI平台和工具服务,以及提供培训教育,培养大量的数据科学工程师,使他们能完成大量基本的数据科学相关工作。通过这些大量的数据科学工程师与数据科学家和各领域专家相互配合的梯形结构,来解决AI人才稀缺问题。

华为AI战略

十大改变既是华为对AI产业发展的期望,也是华为制定AI发展战略的源动力,徐直军系统阐述了华为的AI发展战略以及华为全栈全场景AI解决方案。

基于十大改变,华为的AI发展战略包括五个方面:

投资基础研究:在计算视觉、自然语言处理、决策推理等领域构筑数据高效(更少的数据需求) 、能耗高效(更低的算力和能耗) ,安全可信、自动自治的机器学习基础能力打造全栈方案:打造面向云、边缘和端等全场景的、独立的以及协同的、全栈解决方案,提供充裕的、经济的算力资源,简单易用、高效率、全流程的AI平台投资开放生态和人才培养:面向全球,持续与学术界、产业界和行业伙伴广泛合作,打造人工智能开放生态,培养人工智能人才解决方案增强:把AI思维和技术引入现有产品和服务,实现更大价值、更强竞争力内部效率提升:应用AI优化内部管理,对准海量作业场景,大幅度提升内部运营效率和质量

华为AI解决方案

“我们提出的全场景,是指包括公有云、私有云、各种边缘计算、物联网行业终端以及消费类终端等部署环境。我们说的全栈是技术功能视角,是指包括芯片、芯片使能、训练和推理框架和应用使能在内的全堆栈方案”,徐直军表示。

华为的全栈方案具体包括:

Ascend: 基于统一、可扩展架构的系列化AI IP 和 芯片,包括Max,Mini,Lite,Tiny和Nano等五个系列。包括我们今天发布的华为昇腾910(Ascend 910),是目前全球已发布的单芯片计算密度最大的AI芯片,还有Ascend 310,是目前面向边缘计算场景最强算力的AI SoC。CANN: 芯片算子库和高度自动化算子开发工具MindSpore,支持端、边、云独立的和协同的统一训练和推理框架应用使能:提供全流程服务(ModelArts),分层API和预集成方案

2018年4月,华为发布了面向智能终端的人工智能引擎HiAI;2017年9月,华为发布了面向企业、政府的人工智能服务平台华为云EI。华为发布的全栈全场景解决方案是对华为云EI和HiAI的强有力支撑。基于该解决方案,华为云EI能为企业、政府提供全栈人工智能解决方案;HiAI能为智能终端提供全栈解决方案,且HiAI service是基于华为云EI部署的。

总体来说,华为人工智能的发展战略,是以持续投资基础研究和AI人才培养,打造全栈全场景AI解决方案和开放全球生态为基础。

面向华为内部,持续探索支持内部管理优化和效率提升;面向电信运营商,通过SoftCOM AI 促进运维效率提升;面向消费者,通过HiAI,让终端从智能走向智慧;面向企业和政府,通过华为云EI公有云服务和FusionMind私有云方案为所有组织提供充裕经济的算力并使能其用好AI;同时华为也面向全社会开放提供AI加速卡和AI服务器、一体机等产品;

“我们提出的全场景意味着华为有能力实现智能无所不及,构建万物互联的智能世界。全栈意味着华为有能力为AI应用开发者提供强大的算力和应用开发平台;有能力提供大家用得起,用得好,用的放心的AI,实现普惠AI”,徐直军表示。

传闻芯片问世

对于外界传言华为神秘的AI芯片“达芬奇计划”,徐直军终于在会上作出了回应:“外界一直在传华为在研发AI芯片,今天我要告诉大家:这是事实!”

华为本次发布两款AI芯片,均基于“达芬奇”架构,昇腾910是一款服务器芯片,具体参数为:半精度为(FP 16):256 TeraFLOPS,整数精度(INT8):512 TeraOPS,128通道 全高清 视频解码器- H.264/265;最大功耗350W,采用7nm工艺,2019年第二季度商用

另外,据雷锋网了解,昇腾910每秒浮点运算次数(FLOPS)达到256T,实现单芯片计算密度最大,比英伟达V100还快一倍。

昇腾310是一款极致高效计算低功耗Soc,具体参数为:半精度(FP16):8TeraFLOPS,整数精度(INT8):16TeraOPS,16通道 全高清 视频解码器 -H.264/265,1通道 全高清 视频解码器 -H.264/265,最大功耗8W,采用12nm工艺,Soc目前已经商用,但针对智能手机、智能附件和智能手表等设备的Acsend-Lite、Acsend-Tiny、Acsend-Nano也要等到2019年第二季度商用。

在随后的媒体采访中,徐直军多次强调,华为昇腾910和310芯片将不会对外单独销售,而是以AI加速卡、加速模块、服务器和一体机等模式对外销售。另外他还表示,华为确实和微软有接触,但是并不存在微软已经大规模采购华为服务器芯片的情况。由此看来,华为与微软和合作也将以更进一步的产品形式达成。

 

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如有侵权行为,请第一时间联系我们修改或删除,多谢。